Volume 2, Issue 4, December 2018, Page: 40-45
The α- and β-Relaxation Processes of Polymeric Chitosan from Squid Gladii as Revealed by Dynamic Mechanical Analysis
Juma Hanif, Physics Department, Pwani University, Kilifi, Kenya
John Onyango Agumba, Physics Department, Pwani University, Kilifi, Kenya
Katana Gona Gabriel, Physics Department, Pwani University, Kilifi, Kenya
Received: Nov. 21, 2018;       Accepted: Dec. 13, 2018;       Published: Jan. 22, 2019
DOI: 10.11648/j.ajmme.20180204.12      View  683      Downloads  93
Dynamic mechanical analysis, DMA, is a technique that can be used to study the mechanical properties of polymeric biomaterials so as to help unveil the physiological environments in which they can be applied. In this study, mechanical properties of chitosan (poly (β-(1→4)-N-acetyl-D-glucosamine)) thin films extracted from squid gladii found along the coastal areas of Kilifi and Mombasa in Kenya have been systematically investigated using DMA technique. From the study, chitosan thin film have shown a β- relaxation process occurring between 293K and 323K and the α- relaxation process hereby referred to as glass transition (Tg) occurring between 393K and 423K. Additionally, the chitosan films under the study are viscoelastic with very low mechanical damping suggesting that they have very high rigidity and resistance to deformation. The results from this study have thus given us an insight of the operating temperature range of the biomaterial.
α- Relaxation, β-Relaxation, Squid Gladii, Chitin, Chitosan, Acetylation, Deacetylation
To cite this article
Juma Hanif, John Onyango Agumba, Katana Gona Gabriel, The α- and β-Relaxation Processes of Polymeric Chitosan from Squid Gladii as Revealed by Dynamic Mechanical Analysis, American Journal of Mechanical and Materials Engineering. Vol. 2, No. 4, 2018, pp. 40-45. doi: 10.11648/j.ajmme.20180204.12
Copyright © 2018 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
C. K. Pillai, W. Paul, and C. P. Sharma, Prog. Polym. Science, 34 (7): 641–678, 2009.
T. H. Silva, A. Alves, B. M. Ferreira, J. M. Oliveira, L. L. Reys, R. J. F. Ferreira, R. A. Sousa, S. S. Silva, J. F. Mano, and R. L. Reis, International Material Reviews, 57 (31): 276–306, 2012.
H Du, M. Liu, X. Yang, G. Zhai, Drug Discovery Today. 2015; 20 (8): 1004-1011.
M. Prabaharan, International Journal of Biological Macromolecules. 72: 1313-1322, 2015.
R. Y. Basha, S. Kumar, M. Doble, Materials Science and Engineering: C. 57: 452-463, 2015.
H. Du, M. Liu, X. Yang, G. Zhai, Drug Discovery Today, 20 (8): 1004-1011, 2015.
M. Prabaharan International Journal of Biological Macromolecules, 72: 1313-1322, 2014.
R. Y. Basha, S. Kumar, M. Doble, Materials Science and Engineering, C. 57: 452-463, 2015.
M. Malerba and R. Cerana, Polymers, 10:(2), 118-124, 2018.
A. Baranwa, A. Kumar, A. Priyadharshini, GS. Oggu, I. Bhatnagar, A. Srivastava, P. Chandra, Int J Biol Macromol. 110: 110-123, 2018.
A. K. Y. Salman, Gh O. Abdullah, R. R. Hanna, B. A. Shujahadeen, Int. J. Electrochem. Sci., 13: 3185-3199, 2018.
R. K. Singh, Y. W. Zhang, N. P. Thao, N. M. Jeya, and J. K. Lee, Applied microbiology and macromolecules, 89 (2): 337–344, 2010.
M. A Meyers, Chen Po-Yu, A. Y. Lin and Y. Seki, Progress in Materials Science, 53: 1 to 206, 2008.
I. G. Austin, A. J. Springthorpe, B. A. Smith and C. E. Turner, Proceedings of the Physical Society, 90 (1), 1981.
R. A. A. Muzzarelli. Chitin nanostructures in living organisms, volume 34. Springer, Netherlands, 2011.
A. Domard, Carbohydrate Polymers, 84 (2): 696–703, 2012.
M. Rinaudo, Progress in Polymer Science, 31 (7): 603–632, 2006.
M. Mucha and A. Pawlak, 427 (1 - 2): 69-76, 2005.
S. Rivero, M. A. García1 and A. Pinotti, Adv. Mat. Lett., 4, 10, 578-586, 2014.
A. Toffey and W. G. Glasser. Chitin derivatives iii formation of amidized homologs of chitosan. 8 (1): 35-47, 2001.
J. Ratto and T. Hatakeyama. DSC investigation of phase transition in water/chitosan system. 36: 2915-19, 1995.
K. Sakurai, T. Maegawa, and T. Takashi, Polymer, 41: 7051–7056, 2000.
K. Sakurai, H. Tanaka, N. Ogawa, T. J. Takahashi, Macromol Sci Phys B, 36: 703, 1997.
Browse journals by subject